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Agenda for this Session

• Step 1: Setup (15 mins)
• Clone repository

• Install dependencies

• Step 2: O-RAN installation (45 mins)

• Step 3: srsRAN with e2 interface (30 mins)

• Step 4: Set up and Deploy 5G network (30 mins)
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Connect to Virtual Machine
• We have a limited number of VMs running 

Ubuntu 20.04 on one of our servers

• Once provisioned, we will give you the IP 
address and account credentials

• IP addresses are assigned locally, so you will 
need to first connect through the main server

• You can do this with one command:

• The password for the server guest account is 
guest123

• The default password for the VM is guest123

ssh -p 23401 -A -t guest@kermit.wireless.vt.edu \
  ssh -A guest@<provided.ip>
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Notes on Virtual Machines

• The server includes multiple VMs for 
workshop participants

• 8 CPU cores

• 8 GB RAM

• 80 GB storage

• Lots of useful command-line tools already 
installed (vim, htop, net-tools, tree , git, 
pip, etc.)

• The guest user has sudo privileges for 
running certain commands
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Installation Instructions (ZeroMQ Version)
• A concise installation guide is set up on our 

website:

• https://openaicellular.github.io/oaic/installation.html

• (See screenshot at left)

• This includes all the basic commands for installing 
OAIC-C from scratch on a base Ubuntu 20.04 image

• This tutorial will run through these instructions 
step by step

• Commands in this tutorial that you should run 
are highlighted in a green box:

ping www.openaicellular.org

https://openaicellular.github.io/oaic/installation.html
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Helpful Commands

• Changing directory (cd)
• Enter a directory: cd <directory name/path>

• Exit a directory: cd ..

• Exit multiple directories: cd ../../../..

• List all files in current directory: ls 

• Open a file: vim <filename/path>
• Edit a file: Press i

• Stop editing a file: <Esc>

• Save a file: stop editing <Esc> and type :w

• Exit a file: Stop editing <Esc> and type :q

• Save and exit: Stop editing <Esc> and type :wq
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Clone Repository

• OAIC is organized into several repositories
• “oaic.git” 

(https://github.com/openaicellular/oaic.git) is 
the top-level repo

• All of the supporting repositories are submodules 
that are pulled from oaic.git

• See the directory structure at right

.

├── asn1c
├── docs
├── oaic-t
├── RIC-Deployment
├── ric-plt-e2
├── ric-scp-kpimon
├── srsRAN-e2
├── deployKPIMON.sh
├── generate_installation_script.py
├── LICENSE
├── makefile
├── README.md
├── requirements.txt
└── setup5GNetwork.sh

git clone https://github.com/openaicellular/oaic.git
cd oaic
git submodule update --init --recursive --remote

tree -L 1 --dirsfirst

https://github.com/openaicellular/oaic.git
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Install Dependencies

• OAIC is built on open-source software packages

• OAIC also relies on a number of open-source libraries and binaries

• For convenience, (most of) these can be installed up front using apt, a 
package management tool for Linux Debian and derivative distributions (such 
as Ubuntu)

sudo apt-get install -y build-essential cmake libfftw3-dev libmbedtls-dev
sudo apt-get install -y libzmq3-dev libboost-program-options-dev libconfig++-dev
sudo apt-get install -y nginx libsctp-dev libtool autoconf
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Near-RT RIC Architecture
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Near-RT RIC Architecture
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Docker & Kubernetes

• Difference between Virtual Machines and Containers

Container
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• Docker Containers are light weight while VMs are compute heavy.
• Isolation is better in VM due to dedicated resources, while docker 

uses the host OS kernel.
• Portability and efficiency of VMs is less compared to containers.
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WHY Do We Need Docker?

• Each container can have different OS 

filesystem,use different libraries, and run 

different applications

• Isolated and secure environments.

• Portability and reproducibility.

• Efficient Resource Usage.

• Mainly due to shared kernel with the host OS.

• Scalability – Add or remove containers to 

handle usage variations.
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Kubernetes

• Kubernetes orchestrates container deployments, their 
lifecycle and storage.

• Kubernetes Pod: A pod is a group of one or more containers 
that run instances of an application.

• Kubernetes Service: Enables the group of pods to be 
assigned a name and unique IP address.

• Expose an application deployed on a set of pods using a 
single endpoint. We use only a limited number of 

features offered by Kubernetes – mainly 
resource management & stability.

Benefits of Using Kubernetes:
• Automated container orchestration and management
• Increased scalability and efficient resource management.

• How is this different from the advantage docker provides in terms of scalability?
• Stability.
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Exercise 1 : Install cloud computing platform

Task 1: Explore the file in /etc/infra.rc

Kubernetes version: 1.16

Helm Version: 2.17

1

2

1 gen-cloud-init.sh script reads parameters from infra.rc, env.rc, openstack.rc

Tip
Exit a file – Press :q

cd RIC-Deployment/tools/k8s/
tree -L 3 --dirsfirst

cd etc/
vim infra.rc
Close the file (See  Tip)
cd ..
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Exercise 1 : Install cloud computing platform

Task 2: Execute the installation script generation program 

gen-cloud-init.sh

When executed gen-cloud-init.sh passes all 

parameters to k8s_vm_init.sh and an installation 

script is generated. 

Task 3: Execute the generated installation script 

k8s-1node-cloud-init-k_1_16-h_2_17-d_cur.sh

2

cd bin/
./gen-cloud-init.sh

sudo ./k8s-1node-cloud-init-k_1_16-h_2_17-d_cur.sh
cd ../../../
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Verify Docker Pods & Services are Running

• Verify all pods are deployed and running

We should have a total of 9 pods “ready” & “running”.

• Verify all services are running

We should have a total of 3 services running

sudo kubectl get pods -A

sudo kubectl get services -A
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Create Persistent Volume 

What is Persistent Volume?

• A persistent volume (PV) is a Kubernetes resource that provides a way to 
store data that persists even when the pod that uses it is deleted.

• The InfluxDB (database) uses persistent volumes to store data such as KPIs, xApp 
metrics etc.

• Create the ricinfra namespace

• Install the persistent storage volume

sudo kubectl create ns ricinfra

sudo helm install stable/nfs-server-provisioner --namespace ricinfra --name nfs-release-1
sudo kubectl patch storageclass nfs -p '{"metadata": {"annotations":{"storageclass.kubernetes.io/is-default-class":"true"}}}'
sudo apt install nfs-common
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Exercise 2: Docker Basics

Task 1 : Create a docker registry

• What is a docker registry?
• A Docker registry is a storage and distribution 

system for named Docker images.

• Here we instantiate the registry as a container 
which is running 24/7.

Host machine & 

container port
Image name

version

Container name

sudo docker run -d -p 5001:5000 --restart=always --name ric registry:2
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Docker Basics: Build and Push

Task 2 : Create a docker image with the modified 
E2 termination code (already provided).

• What is a docker image?

A Docker image contains application code, 
libraries, tools, dependencies and other files 
needed to make an application run

• Task 3 : Push the Created image to the registry

sudo docker push localhost:5001/ric-plt-e2:5.5.0
cd ../../

IP address of 
our system

Network 
port 
number 

Version 

number

cd ~/oaic/ric-plt-e2/RIC-E2-TERMINATION
sudo docker build -f Dockerfile -t localhost:5001/ric-plt-e2:5.5.0 . 

Image name
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Exercise 3: Deploy the near-RT RIC

Task 1: Explore the Recipe file

• What is a Recipe file?

Recipe provides a customized specification for the components of a 
deployment group.

cd ~/oaic/RIC-Deployment/RECIPE_EXAMPLE/PLATFORM
vim example_recipe_oran_e_release_modified_e2.yaml
Close the file (See  Tip)
cd ~/oaic

Tip
Exit a file – Press :q
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Deploy the near-RT RIC (continued)

Task 2: Deploy the RIC Platform

cd RIC-Deployment/bin

sudo ./deploy-ric-platform -f ../RECIPE_EXAMPLE/PLATFORM/example_recipe_oran_e_release_modified_e2.yaml

sudo kubectl get pods –A
sudo kubectl get services -A
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Step 3: Installing srsRAN with e2 interface

• Usually, eNodeB and UE are used with physical radios for over-the-air transmissions.
• Here we will use a virtual radio which uses the ZeroMQ networking library to transfer radio samples 

(I/Q samples) between eNB and UE.

srsEPC

HSS MME

SGWPGW

E2 Node

eNB

gNB

X2

N/W

port

N/W

port

Internet

UEN/W

port

Control Plane signaling

Data Plane signaling

srsRAN 5G NSA Architecture – ZMQ Frontend
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Asn1c Compiler Installation

What is ASN.1 (Abstract Syntax Notation.1)?

• ASN.1 is an interface description language (IDL) used for 
describing data transmitted by protocols, regardless of the 
underlying language implementation.

• This representation combined with standardization helps in 
achieving interoperability.

Why do we need the asn1 compiler?

• The compiler translates ASN.1 source specifications 
(developed by standardization bodies viz., 3GPP, O-RAN etc.) 
into C, C++, Java, Python, Go source code. 

• Developers can use this code to translate the data they want 
to send/receive to/from the defined ASN.1 format.

cd ../../asn1c
autoreconf -iv
./configure
make -j4
sudo make install
sudo ldconfig
cd ..



National
Science
Foundation

srsRAN installation

cd srsRAN-e2
mkdir build
export SRS=`realpath .`
cd build
cmake ../ -DCMAKE_BUILD_TYPE=RelWithDebInfo \
    -DRIC_GENERATED_E2AP_BINDING_DIR=${SRS}/e2_bindings/E2AP-v01.01 \
    -DRIC_GENERATED_E2SM_KPM_BINDING_DIR=${SRS}/e2_bindings/E2SM-KPM \
    -DRIC_GENERATED_E2SM_GNB_NRT_BINDING_DIR=${SRS}/e2_bindings/E2SM-GNB-NRT
make -j`nproc`
sudo make install
sudo ldconfig
sudo srsran_install_configs.sh service
cd ../../

Compile and install srsRAN software stack:
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Step 4: Deploy 5G Network

• We will need a total of four terminals to trace the interaction between the near-RT RIC and the RAN.

• We will be observing the following processes

1. The Core Network (EPC)

2. The Base station (gNB)

3. The User Equipment (UE)

4. The traffic generator (e.g. ping or iPerf test)
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Terminal 1: Deploy the EPC (Core Network)

• Here we will be using the Core Network software provided by SRS.

• The SRS base station (eNB/gNB) software is also compatible with third party Core 
Network solutions (Open5GS, MAGMA, etc.)

• Open a new window on the terminal. Let’s call this Terminal 2.

• Before we start the EPC, we need to create a separate network namespace for the UE 
since all components are running on the same machine.

• Start the EPC

sudo ip netns add ue1
sudo ip netns list

1

sudo srsepc

1

1



National
Science
Foundation

Terminal 2: Deploy the en-gNB
Task 1: Get the  IP address of the E2 Termination 
pod

• To connect the en-gNB to the near-RT RIC we 
should specify the IP address of the E2 
Termination pod while instantiating the gNB.

Warning: This IP address will be different for 

each one of you! DO NOT COPY from the 
picture.

To automatically get the IP address, 

sudo kubectl get svc -n ricplt

2

export E2TERM_IP=`sudo kubectl get svc -n ricplt --field-selector metadata.name=service-ricplt-e2term-sctp-alpha -o jsonpath='{.items[0].spec.clusterIP}'`
echo $E2TERM_IP

2

2
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Terminal 2: Deploy the en-gNB (continued)

Task 2: Bring up the en-gNB
• Get the host Machine IP address

• Instantiate the en-gNB

• Wait for about 30 seconds
• Observe the output on all the first two terminals

export E2NODE_IP=`hostname  -I | cut -f1 -d' '`
export E2NODE_PORT=5006

2

sudo srsenb --enb.n_prb=50 --enb.name=enb1 --enb.enb_id=0x19B --rf.device_name=zmq \
--rf.device_args="fail_on_disconnect=true,tx_port0=tcp://*:2000,rx_port0=tcp://localhost:2001,tx_port1=tcp://*:2100,rx_port1=tcp://localhost:2101,id=enb,base_srate=23.04e6" \
--ric.agent.remote_ipv4_addr=${E2TERM_IP} --log.all_level=warn --ric.agent.log_level=debug --log.filename=stdout --ric.agent.local_ipv4_addr=${E2NODE_IP} \
--ric.agent.local_port=${E2NODE_PORT}

2

E2 Agent
(end point)

E2AP

PDCP

RLC

MAC

R
R

C

PHY

RIC connection Manager
Near-RT RIC Address, Port

Supported RIC services

IP

Generate Handle

Encode Decode
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EPC and en-gNB Logs

2
1
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en-gNB Logs
2
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Terminal 3: Start the UE

Open a third terminal and start 
srsUE

sudo srsue --gw.netns=ue1

3

3

2



National
Science
Foundation

Terminal 4: Run traffic

Open a fourth terminal and check 
for connectivity

sudo ip netns exec ue1 ping 172.16.0.1 –c50

4

UE Console trace – Press “t” on UE Terminal 

(Terminal 3)

4

3
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QUESTIONS?
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THANK YOU
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Backup
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Notes + TODO
• Modifications to base VM:

• Default screen resolution

• Include terminal as shortcut

• Remove extra stuff as favorites

• Change background image

• Shortcut to oaic installation on desktop

• sudo apt-get install net-tools vim openssh-server htop

• Enable ssh

• Ssh timeout

• When trying to run apt-get install, getting error "could not get lock /var/lib/dpkg/lock-frontend": Reboot VM?

• Password-less sudo on VMs
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Troubleshooting

• Error “Could not get lock /var/lib/dpkg/lock-frontend”

• “sudo killall apt apt-get”

• E2 Termination pod is not ready

• sudo kubectl -n ricplt rollout restart deployment deployment-ricplt-e2term-alpha

• Find if a process is running

• ps ax | grep <pname>

• Error “could not find a ready tiller pod”

• Wait and try again (?)
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E2 Manager Logs
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Near-RT RIC software Architecture
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