
National
Science
Foundation

OAIC-C Installation
9 Aug 2023

Pratheek Upadhyaya
Dr. Joseph D. Gaeddert, PI

National
Science
Foundation

Agenda for this Session

• Step 1: Setup (15 mins)
• Clone repository

• Install dependencies

• Step 2: O-RAN installation (45 mins)

• Step 3: srsRAN with e2 interface (30 mins)

• Step 4: Set up and Deploy 5G network (30 mins)

National
Science
Foundation

Connect to Virtual Machine
• We have a limited number of VMs running

Ubuntu 20.04 on one of our servers

• Once provisioned, we will give you the IP
address and account credentials

• IP addresses are assigned locally, so you will
need to first connect through the main server

• You can do this with one command:

• The password for the server guest account is
guest123

• The default password for the VM is guest123

ssh -p 23401 -A -t guest@kermit.wireless.vt.edu \
 ssh -A guest@<provided.ip>

National
Science
Foundation

Notes on Virtual Machines

• The server includes multiple VMs for
workshop participants

• 8 CPU cores

• 8 GB RAM

• 80 GB storage

• Lots of useful command-line tools already
installed (vim, htop, net-tools, tree , git,
pip, etc.)

• The guest user has sudo privileges for
running certain commands

National
Science
Foundation

Installation Instructions (ZeroMQ Version)
• A concise installation guide is set up on our

website:

• https://openaicellular.github.io/oaic/installation.html

• (See screenshot at left)

• This includes all the basic commands for installing
OAIC-C from scratch on a base Ubuntu 20.04 image

• This tutorial will run through these instructions
step by step

• Commands in this tutorial that you should run
are highlighted in a green box:

ping www.openaicellular.org

https://openaicellular.github.io/oaic/installation.html

National
Science
Foundation

Helpful Commands

• Changing directory (cd)
• Enter a directory: cd <directory name/path>

• Exit a directory: cd ..

• Exit multiple directories: cd ../../../..

• List all files in current directory: ls

• Open a file: vim <filename/path>
• Edit a file: Press i

• Stop editing a file: <Esc>

• Save a file: stop editing <Esc> and type :w

• Exit a file: Stop editing <Esc> and type :q

• Save and exit: Stop editing <Esc> and type :wq

National
Science
Foundation

Clone Repository

• OAIC is organized into several repositories
• “oaic.git”

(https://github.com/openaicellular/oaic.git) is
the top-level repo

• All of the supporting repositories are submodules
that are pulled from oaic.git

• See the directory structure at right

.

├── asn1c
├── docs
├── oaic-t
├── RIC-Deployment
├── ric-plt-e2
├── ric-scp-kpimon
├── srsRAN-e2
├── deployKPIMON.sh
├── generate_installation_script.py
├── LICENSE
├── makefile
├── README.md
├── requirements.txt
└── setup5GNetwork.sh

git clone https://github.com/openaicellular/oaic.git
cd oaic
git submodule update --init --recursive --remote

tree -L 1 --dirsfirst

https://github.com/openaicellular/oaic.git

National
Science
Foundation

Install Dependencies

• OAIC is built on open-source software packages

• OAIC also relies on a number of open-source libraries and binaries

• For convenience, (most of) these can be installed up front using apt, a
package management tool for Linux Debian and derivative distributions (such
as Ubuntu)

sudo apt-get install -y build-essential cmake libfftw3-dev libmbedtls-dev
sudo apt-get install -y libzmq3-dev libboost-program-options-dev libconfig++-dev
sudo apt-get install -y nginx libsctp-dev libtool autoconf

National
Science
Foundation

Near-RT RIC Architecture
SMO

E2 Node

Application
Manager

Routing
Manager

E2
Manager

Subscription
Manager

VESPA
Manager

O1
Mediator

A1
Mediator

DBaaS

xApp #1

InfluxDB

Alarm
Manager

xApp #1xApp #1

A1 Interface O1 Interface

E2 Node

E2 Interface

RMR Messaging Infrastructure

E2
Terminator

E2 Node (gNodeB, eNodeB, etc)

SDL

Non-Real-time RIC

N
ea

r
R

ea
l-

ti
m

e
R

IC

…Not a single

piece of SW

● Distributed

components

● Isolated & resource

efficient design.

● Microservice

architecture

Credits: Dr. Joao Santos, CCI

National
Science
Foundation

Near-RT RIC Architecture

Application
Manager

Routing
Manager

E2
Manager

Subscription
Manager

VESPA
Manager

O1
Mediator

A1
Mediator

DBaaS

xApp #1

InfluxDB

Alarm
Manager

xApp #1xApp #1

RMR Messaging Infrastructure

E2
Terminator

SDL

N
ea

r
R

ea
l-

ti
m

e
R

IC

Virtual Machine - Guest OS, kernel

Physical Host Machine Hardware

Hypervisor & Host Machine OS

All of which:

● Run as
Docker containers

● Managed by a
Kubernetes cluster

Credits: Dr. Joao Santos, CCI

National
Science
Foundation

Docker & Kubernetes

• Difference between Virtual Machines and Containers

Container

Hardware Infrastructure

Host OS

Docker Engine

Bin/Lib

App #1

Container

Bin/Lib

App #N

Container

Bin/Lib

App #2

VM 1

Hardware Infrastructure

Hypervisor

Guest OS

App #1

VM 3

Guest OS

App #N

VM 2

Guest OS

App #2

• Docker Containers are light weight while VMs are compute heavy.
• Isolation is better in VM due to dedicated resources, while docker

uses the host OS kernel.
• Portability and efficiency of VMs is less compared to containers.

National
Science
Foundation

WHY Do We Need Docker?

• Each container can have different OS

filesystem,use different libraries, and run

different applications

• Isolated and secure environments.

• Portability and reproducibility.

• Efficient Resource Usage.

• Mainly due to shared kernel with the host OS.

• Scalability – Add or remove containers to

handle usage variations.

National
Science
Foundation

Kubernetes

• Kubernetes orchestrates container deployments, their
lifecycle and storage.

• Kubernetes Pod: A pod is a group of one or more containers
that run instances of an application.

• Kubernetes Service: Enables the group of pods to be
assigned a name and unique IP address.

• Expose an application deployed on a set of pods using a
single endpoint. We use only a limited number of

features offered by Kubernetes – mainly
resource management & stability.

Benefits of Using Kubernetes:
• Automated container orchestration and management
• Increased scalability and efficient resource management.

• How is this different from the advantage docker provides in terms of scalability?
• Stability.

National
Science
Foundation

Exercise 1 : Install cloud computing platform

Task 1: Explore the file in /etc/infra.rc

Kubernetes version: 1.16

Helm Version: 2.17

1

2

1 gen-cloud-init.sh script reads parameters from infra.rc, env.rc, openstack.rc

Tip
Exit a file – Press :q

cd RIC-Deployment/tools/k8s/
tree -L 3 --dirsfirst

cd etc/
vim infra.rc
Close the file (See Tip)
cd ..

National
Science
Foundation

Exercise 1 : Install cloud computing platform

Task 2: Execute the installation script generation program

gen-cloud-init.sh

When executed gen-cloud-init.sh passes all

parameters to k8s_vm_init.sh and an installation

script is generated.

Task 3: Execute the generated installation script

k8s-1node-cloud-init-k_1_16-h_2_17-d_cur.sh

2

cd bin/
./gen-cloud-init.sh

sudo ./k8s-1node-cloud-init-k_1_16-h_2_17-d_cur.sh
cd ../../../

National
Science
Foundation

Verify Docker Pods & Services are Running

• Verify all pods are deployed and running

We should have a total of 9 pods “ready” & “running”.

• Verify all services are running

We should have a total of 3 services running

sudo kubectl get pods -A

sudo kubectl get services -A

National
Science
Foundation

Create Persistent Volume

What is Persistent Volume?

• A persistent volume (PV) is a Kubernetes resource that provides a way to
store data that persists even when the pod that uses it is deleted.

• The InfluxDB (database) uses persistent volumes to store data such as KPIs, xApp
metrics etc.

• Create the ricinfra namespace

• Install the persistent storage volume

sudo kubectl create ns ricinfra

sudo helm install stable/nfs-server-provisioner --namespace ricinfra --name nfs-release-1
sudo kubectl patch storageclass nfs -p '{"metadata": {"annotations":{"storageclass.kubernetes.io/is-default-class":"true"}}}'
sudo apt install nfs-common

National
Science
Foundation

Exercise 2: Docker Basics

Task 1 : Create a docker registry

• What is a docker registry?
• A Docker registry is a storage and distribution

system for named Docker images.

• Here we instantiate the registry as a container
which is running 24/7.

Host machine &

container port
Image name

version

Container name

sudo docker run -d -p 5001:5000 --restart=always --name ric registry:2

National
Science
Foundation

Docker Basics: Build and Push

Task 2 : Create a docker image with the modified
E2 termination code (already provided).

• What is a docker image?

A Docker image contains application code,
libraries, tools, dependencies and other files
needed to make an application run

• Task 3 : Push the Created image to the registry

sudo docker push localhost:5001/ric-plt-e2:5.5.0
cd ../../

IP address of
our system

Network
port
number

Version

number

cd ~/oaic/ric-plt-e2/RIC-E2-TERMINATION
sudo docker build -f Dockerfile -t localhost:5001/ric-plt-e2:5.5.0 .

Image name

National
Science
Foundation

Exercise 3: Deploy the near-RT RIC

Task 1: Explore the Recipe file

• What is a Recipe file?

Recipe provides a customized specification for the components of a
deployment group.

cd ~/oaic/RIC-Deployment/RECIPE_EXAMPLE/PLATFORM
vim example_recipe_oran_e_release_modified_e2.yaml
Close the file (See Tip)
cd ~/oaic

Tip
Exit a file – Press :q

National
Science
Foundation

Deploy the near-RT RIC (continued)

Task 2: Deploy the RIC Platform

cd RIC-Deployment/bin

sudo ./deploy-ric-platform -f ../RECIPE_EXAMPLE/PLATFORM/example_recipe_oran_e_release_modified_e2.yaml

sudo kubectl get pods –A
sudo kubectl get services -A

National
Science
Foundation

Step 3: Installing srsRAN with e2 interface

• Usually, eNodeB and UE are used with physical radios for over-the-air transmissions.
• Here we will use a virtual radio which uses the ZeroMQ networking library to transfer radio samples

(I/Q samples) between eNB and UE.

srsEPC

HSS MME

SGWPGW

E2 Node

eNB

gNB

X2

N/W

port

N/W

port

Internet

UEN/W

port

Control Plane signaling

Data Plane signaling

srsRAN 5G NSA Architecture – ZMQ Frontend

National
Science
Foundation

Asn1c Compiler Installation

What is ASN.1 (Abstract Syntax Notation.1)?

• ASN.1 is an interface description language (IDL) used for
describing data transmitted by protocols, regardless of the
underlying language implementation.

• This representation combined with standardization helps in
achieving interoperability.

Why do we need the asn1 compiler?

• The compiler translates ASN.1 source specifications
(developed by standardization bodies viz., 3GPP, O-RAN etc.)
into C, C++, Java, Python, Go source code.

• Developers can use this code to translate the data they want
to send/receive to/from the defined ASN.1 format.

cd ../../asn1c
autoreconf -iv
./configure
make -j4
sudo make install
sudo ldconfig
cd ..

National
Science
Foundation

srsRAN installation

cd srsRAN-e2
mkdir build
export SRS=`realpath .`
cd build
cmake ../ -DCMAKE_BUILD_TYPE=RelWithDebInfo \
 -DRIC_GENERATED_E2AP_BINDING_DIR=${SRS}/e2_bindings/E2AP-v01.01 \
 -DRIC_GENERATED_E2SM_KPM_BINDING_DIR=${SRS}/e2_bindings/E2SM-KPM \
 -DRIC_GENERATED_E2SM_GNB_NRT_BINDING_DIR=${SRS}/e2_bindings/E2SM-GNB-NRT
make -j`nproc`
sudo make install
sudo ldconfig
sudo srsran_install_configs.sh service
cd ../../

Compile and install srsRAN software stack:

National
Science
Foundation

Step 4: Deploy 5G Network

• We will need a total of four terminals to trace the interaction between the near-RT RIC and the RAN.

• We will be observing the following processes

1. The Core Network (EPC)

2. The Base station (gNB)

3. The User Equipment (UE)

4. The traffic generator (e.g. ping or iPerf test)

National
Science
Foundation

Terminal 1: Deploy the EPC (Core Network)

• Here we will be using the Core Network software provided by SRS.

• The SRS base station (eNB/gNB) software is also compatible with third party Core
Network solutions (Open5GS, MAGMA, etc.)

• Open a new window on the terminal. Let’s call this Terminal 2.

• Before we start the EPC, we need to create a separate network namespace for the UE
since all components are running on the same machine.

• Start the EPC

sudo ip netns add ue1
sudo ip netns list

1

sudo srsepc

1

1

National
Science
Foundation

Terminal 2: Deploy the en-gNB
Task 1: Get the IP address of the E2 Termination
pod

• To connect the en-gNB to the near-RT RIC we
should specify the IP address of the E2
Termination pod while instantiating the gNB.

Warning: This IP address will be different for

each one of you! DO NOT COPY from the
picture.

To automatically get the IP address,

sudo kubectl get svc -n ricplt

2

export E2TERM_IP=`sudo kubectl get svc -n ricplt --field-selector metadata.name=service-ricplt-e2term-sctp-alpha -o jsonpath='{.items[0].spec.clusterIP}'`
echo $E2TERM_IP

2

2

National
Science
Foundation

Terminal 2: Deploy the en-gNB (continued)

Task 2: Bring up the en-gNB
• Get the host Machine IP address

• Instantiate the en-gNB

• Wait for about 30 seconds
• Observe the output on all the first two terminals

export E2NODE_IP=`hostname -I | cut -f1 -d' '`
export E2NODE_PORT=5006

2

sudo srsenb --enb.n_prb=50 --enb.name=enb1 --enb.enb_id=0x19B --rf.device_name=zmq \
--rf.device_args="fail_on_disconnect=true,tx_port0=tcp://*:2000,rx_port0=tcp://localhost:2001,tx_port1=tcp://*:2100,rx_port1=tcp://localhost:2101,id=enb,base_srate=23.04e6" \
--ric.agent.remote_ipv4_addr=${E2TERM_IP} --log.all_level=warn --ric.agent.log_level=debug --log.filename=stdout --ric.agent.local_ipv4_addr=${E2NODE_IP} \
--ric.agent.local_port=${E2NODE_PORT}

2

E2 Agent
(end point)

E2AP

PDCP

RLC

MAC

R
R

C

PHY

RIC connection Manager
Near-RT RIC Address, Port

Supported RIC services

IP

Generate Handle

Encode Decode

National
Science
Foundation

EPC and en-gNB Logs

2
1

National
Science
Foundation

en-gNB Logs
2

National
Science
Foundation

Terminal 3: Start the UE

Open a third terminal and start
srsUE

sudo srsue --gw.netns=ue1

3

3

2

National
Science
Foundation

Terminal 4: Run traffic

Open a fourth terminal and check
for connectivity

sudo ip netns exec ue1 ping 172.16.0.1 –c50

4

UE Console trace – Press “t” on UE Terminal

(Terminal 3)

4

3

National
Science
Foundation

QUESTIONS?

National
Science
Foundation

THANK YOU

National
Science
Foundation

Backup

National
Science
Foundation

Notes + TODO
• Modifications to base VM:

• Default screen resolution

• Include terminal as shortcut

• Remove extra stuff as favorites

• Change background image

• Shortcut to oaic installation on desktop

• sudo apt-get install net-tools vim openssh-server htop

• Enable ssh

• Ssh timeout

• When trying to run apt-get install, getting error "could not get lock /var/lib/dpkg/lock-frontend": Reboot VM?

• Password-less sudo on VMs

National
Science
Foundation

Troubleshooting

• Error “Could not get lock /var/lib/dpkg/lock-frontend”

• “sudo killall apt apt-get”

• E2 Termination pod is not ready

• sudo kubectl -n ricplt rollout restart deployment deployment-ricplt-e2term-alpha

• Find if a process is running

• ps ax | grep <pname>

• Error “could not find a ready tiller pod”

• Wait and try again (?)

National
Science
Foundation

E2 Manager Logs

National
Science
Foundation

Near-RT RIC software Architecture

A
dm

C
on

tr
ol

M
C

M
L

kp
im

on

:80

:443

[auxip]:32080

[auxip]:32443

:80
:44
3

[auxip]:3208
0
[auxip]:3244
3

E2

T
e

rm
in

a
ti

o
n

V
ES

PA

D
ba

aS

A
1

 M
e

d
ia

ti
o

n

xA
p

p

M
a

na
ge

r

Su
b

M
a

na
ge

r

R
ou

ti
ng

 M
a

na
ge

r

E2
 M

a
na

ge
r

Ja
e

g
e

r
A

IO

aux-entry/*

aux-entry/*

aux-entry/*

ricxapp namespace

ricplt namespace

Ko
ng

Ch
ar

t
M

u
se

u
m

ricinfra
namespace

:32080
(http)
:32443 (tls)

Ingress
Controlle
r (Kong)

helm/

appmgr/
e2mgr/

a1mediator
/

R
ob

ot
 t

es
te

r

RIC K8S Cluster

VM/ Bare metal

Docker host

VM/ Bare metal

Docker host

VM/ Bare metal

Docker host

Prometheus fluentd ElasticSearch

R
A

N
 S

IM

helm/

vescollector
/

RIC cluster

IPv4 and IPv6 networking

	Default Section
	Slide 1: OAIC-C Installation 9 Aug 2023 Pratheek Upadhyaya Dr. Joseph D. Gaeddert, PI
	Slide 2: Agenda for this Session

	Connect to a VM
	Slide 3: Connect to Virtual Machine
	Slide 4: Notes on Virtual Machines
	Slide 5: Installation Instructions (ZeroMQ Version)
	Slide 6: Helpful Commands
	Slide 7: Clone Repository
	Slide 8: Install Dependencies

	O-RAN Installation
	Slide 9: Near-RT RIC Architecture
	Slide 10: Near-RT RIC Architecture

	Motivation for using Docker and Kubernetes
	Slide 11: Docker & Kubernetes
	Slide 12: WHY Do We Need Docker?
	Slide 13: Kubernetes
	Slide 14: Exercise 1 : Install cloud computing platform
	Slide 15: Exercise 1 : Install cloud computing platform
	Slide 16: Verify Docker Pods & Services are Running
	Slide 17: Create Persistent Volume
	Slide 18: Exercise 2: Docker Basics
	Slide 19: Docker Basics: Build and Push
	Slide 20: Exercise 3: Deploy the near-RT RIC
	Slide 21: Deploy the near-RT RIC (continued)

	srsRAN installation
	Slide 22: Step 3: Installing srsRAN with e2 interface
	Slide 23: Asn1c Compiler Installation
	Slide 24: srsRAN installation

	Deploy 5G Network
	Slide 25: Step 4: Deploy 5G Network
	Slide 26: Terminal 1: Deploy the EPC (Core Network)
	Slide 27: Terminal 2: Deploy the en-gNB
	Slide 28: Terminal 2: Deploy the en-gNB (continued)
	Slide 29: EPC and en-gNB Logs
	Slide 30: en-gNB Logs
	Slide 31: Terminal 3: Start the UE
	Slide 32: Terminal 4: Run traffic
	Slide 33: QUESTIONS?
	Slide 34: THANK YOU

	Backup slides
	Slide 35: Backup
	Slide 36: Notes + TODO
	Slide 37: Troubleshooting
	Slide 38: E2 Manager Logs
	Slide 39: Near-RT RIC software Architecture

